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EXACT AND HEURISTIC ALGORITHMS FOR
SEMI-NONNEGATIVE MATRIX FACTORIZATION∗

NICOLAS GILLIS† AND ABHISHEK KUMAR‡

Abstract. Given a matrix M (not necessarily nonnegative) and a factorization rank r, semi-
nonnegative matrix factorization (semi-NMF) looks for a matrix U with r columns and a nonnegative
matrix V with r rows such that UV is the best possible approximation of M according to some
metric. In this paper, we study the properties of semi-NMF from which we develop exact and
heuristic algorithms. Our contribution is threefold. First, we prove that the error of a semi-NMF of
rank r has to be smaller than the best unconstrained approximation of rank r − 1. This leads us to
a new initialization procedure based on the singular value decomposition (SVD) with a guarantee
on the quality of the approximation. Second, we propose an exact algorithm (that is, an algorithm
that finds an optimal solution), also based on the SVD, for a certain class of matrices (including
nonnegative irreducible matrices) from which we derive an initialization for matrices not belonging
to that class. Numerical experiments illustrate that this second approach performs extremely well,
and allows us to compute optimal semi-NMF decompositions in many situations. Finally, we analyze
the computational complexity of semi-NMF proving its NP-hardness, already in the rank-one case
(that is, for r = 1), and we show that semi-NMF is sometimes ill-posed (that is, an optimal solution
does not exist).
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1. Introduction. Semi-nonnegative matrix factorization (semi-NMF) can be
defined as follows: given a matrix M ∈ R

m×n and a factorization rank r, solve

(1.1) min
U∈Rm×r ,V ∈Rr×n

||M − UV ||2F such that V ≥ 0,

where ||.||F is the Frobenius norm and V ≥ 0 means that V is componentwise nonneg-
ative. Note that any other suitable metric could be used but we focus in this paper
on this particular objective function. Semi-NMF has been used in the context of data
analysis and clustering [9]. In fact, letting each column of the input matrix repre-
sent an element of a data set (there are n elements in dimension m), the semi-NMF
decomposition can be equivalently written as

M(:, j) ≈
r∑

k=1

U(:, k)V (k, j) for all j,

so that each column ofM is a conic combination of the columns of U since V ≥ 0. Each
column of U can then be interpreted as a cluster centroid while the columns of V are
the weights needed to reconstruct approximately each column of M using the columns
of U and hence can be interpreted as cluster membership indicators; see the discussion
in [9]. Semi-NMF has been used successfully for example for motion segmentation with
missing data [21], image superresolution [4], or hyperspectral unmixing [27].
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Let us define the semi-nonnegative rank of matrix M , denoted ranks(M), as the
smallest r such that there exists U ∈ R

m×r and V ∈ R
r×n with M = UV and V ≥ 0.

Let us also define exact semi-NMF, a problem closely related to semi-NMF, as follows:
given a matrix M ∈ R

m×n, compute its semi-nonnegative rank rs = ranks(M) and
a corresponding factorization U ∈ R

m×rs and V ∈ R
rs×n such that M = UV and

V ≥ 0. We also denote rank(M) the usual rank of a matrix M , and rank+(M)
its nonnegative rank which is the smallest k such that there exists U ∈ R

m×k
+ and

V ∈ R
k×n
+ with M = UV ; see, e.g., [12] and the references therein. By definition, we

have

rank(M) ≤ ranks(M) ≤ rank+(M).

The paper is organized as follows.
• In section 2, we prove that the error of a semi-NMF of rank r has to be smaller
than the best unconstrained approximation1 of rank r − 1 (Theorem 2.1),
which implies ranks(M) ≤ rank(M) + 1. This leads us to a new initialization
procedure for semi-NMF based on the singular value decomposition (SVD)
with a guarantee on the quality of the approximation (Algorithm 2).
• In section 3, we prove that solving exact semi-NMF can be done in polynomial
time (Theorem 3.2). In particular, we show that ranks(M) = rank(M) if and
only if a positive vector belongs to the row space of M (after having removed
its zero columns), otherwise ranks(M) = rank(M) + 1 (Theorem 3.1). We
propose an algorithm that solves semi-NMF (1.1) for a certain class of matri-
ces (which includes nonnegative matrices M for which MTM is irreducible)
and requires one SVD computation (Algorithm 3). We also generalize this
algorithm for matrices not belonging to that class and, in section 5, we show
that it performs extremely well, often leading to optimal solutions of semi-
NMF (1.1).
• In section 4, we prove that semi-NMF is NP-hard already for r = 1 (Theo-
rem 4.1). In light of the results above, this shows that computing (approx-
imate) semi-NMF is much more difficult than computing exact semi-NMF
(unless P = NP ). Moreover, we also show that semi-NMF is sometimes
ill-posed (that is, an optimal solution does not exist).

Remark 1. While finishing up this paper, we noticed the very recent paper [7]. It
treats the exact semi-NMF problem, and studies Theorems 2.1 and 3.1 of this paper.2

Our contribution goes further than proving Theorems 2.1 and 3.1, and is rather
oriented towards algorithmic aspects: we propose (i) a polynomial-time algorithm for
exact semi-NMF and (ii) a very efficient way to initialize semi-NMF algorithms which
is provably optimal for a subclass of matrices; see Algorithm 3. Moreover, we prove
NP-hardness and ill-posedness of semi-NMF; see section 4.

2. Semi-NMF based on unconstrained low-rank approximations. Given
any rank-r factorization (A,B) of a matrix M = AB, an exact rank-2r semi-NMF

1In the remainder of the paper, unless stated otherwise, we will refer to the best rank-r approx-
imation X of M as an optimal solution of minX,rank(X)≤r ||M − X||2F . Note that the best rank-r
unconstrained approximation of a given matrix is not necessarily unique. In fact, it is if and only if
the rth and (r + 1)th singular values are distinct; see, e.g., [14]. However, we will use in this paper
this abuse of language as the nonuniqueness issue does not play a role in our developments.

2Note however that the case of matrices with zero columns is not properly treated in [7]; see
Theorem 3.1.
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can be constructed since

M = AB = A(B+ −B−) = [A, −A]
[

B+

B−

]
,

where B+ = max(B, 0) ≥ 0 and B− = max(−B, 0) ≥ 0 so that B = B+ − B−. This
implies

(2.1) ranks(M) ≤ 2 rank(M).

2.1. Tight upper bound based on the usual rank. A much better bound
than (2.1) based on the usual rank can be derived. In fact, we now show that any
factorization of rank k can be transformed into a semi-NMF of rank k + 1.

Theorem 2.1 (see also [7], Lem. 1). Let A ∈ R
m×k and B ∈ R

k×n. Then, there
exists U ∈ R

m×(k+1) and V ∈ R
(k+1)×n such that V ≥ 0 and UV = AB.

Proof. Let us define ā = −∑iA(:, i) = −Ae, where e is the vector of all ones of
appropriate dimensions. Let also

U = [A ā] and V (:, j) =

(
B(:, j)

0

)
+max

(
0,max

i
(−Bij)

)
e ∈ R

k+1
+

for all 1 ≤ j ≤ n. We have for all j that

UV (:, j) = [A ā]

[(
B(:, j)

0

)
+max

(
0,max

i
(−Bij)

)
e

]

= AB(:, j) + max
(
0,max

i
(−Bij)

)
[A ā]e = AB(:, j),

since [A ā]e = 0 by construction.
Theorem 2.1 can be geometrically interpreted as follows: any set of data points

in an r-dimensional space can be enclosed in the convex hull of r + 1 vertices. For
example, any set of points in a two-dimensional affine subspace is enclosed in a triangle
(the triangle just needs to be big enough to contain all data points); see [7, section 4]
for more details.

Corollary 2.2. For any matrix M , we have

rank(M) ≤ ranks(M) ≤ rank(M) + 1.

Proof. This follows from Theorem 2.1.
This implies that either ranks(M) = rank(M) or ranks(M) = rank(M) + 1.

Observe the following:
• The above bound is tight. For example, the matrix

M =

(
1 0 −1
0 1 −1

)

satisfies ranks(M) = rank(M) + 1 = 3 (because the cone spanned by the
columns of M , namely, R2, cannot be represented as a cone spanned by two
vectors).
• When n is large (n� rank(M) = r), in general, ranks(M) = r+1. In fact, it
is not likely for a set of n points in an r-dimensional space to be spanned by a
cone with r rays when n� r. This would require these vectors to be contained
in the same half-space (see section 3 for a complete characterization). For
example, if we generate these vectors uniformly at random on the unit disk,
the probability for these vectors to be in the same half-space goes to zero
extremely fast as n grows.
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• The function ranks(.) is not invariant under transposition, that is, ranks(M)
is not necessarily equal to ranks(M

T ), although they cannot differ by more
than one (see Corollary 2.2). For example, the matrix

M =

⎛
⎝ −1 0 −1

0 −1 −1
1 1 2

⎞
⎠ =

⎛
⎝ −1 0

0 −1
1 1

⎞
⎠( 1 0 1

0 1 1

)

satisfies ranks(M) = 2 �= ranks(M
T ) = 3.

2.2. Algorithm for semi-NMF. A simple yet effective algorithm for semi-
NMF is a block coordinate descent method that alternatively optimizes over U for V
fixed and over V for U fixed:

• The problem in U is an unconstrained least squares and can be solved with
dedicated solvers.
• The problem in V is a nonnegative least squares problem. To solve this
problem, we propose to use a block coordinate descent method on the rows
of V since the optimal solution for a given row (all other rows being fixed)
has a closed-form solution; see, e.g., [11] and the references therein.

Algorithm 1 implements this strategy and is guaranteed to converge to a stationary
point of (1.1) because each block of variables is optimized exactly and achieves a
unique global minimizer3 [2, 3] (Prop. 2.7.1). (Note that a value of maxiter between
100 and 500 usually gives good results, although this depends on the initialization
and the dimensions m, n, and r; see section 5 for some numerical experiments.)

Algorithm 1. Coordinate descent for semi-NMF.

Input: A matrix M ∈ R
m×n, an initialization V ∈ R

r×n
+ , a maximum number of

iterations maxiter.
Output: A rank-r semi-NMF (U, V ) of M ≈ UV with V ≥ 0.

1: for i = 1 : maxiter do
2: U ← argminX∈Rm×r ||M −XV ||2F (= M/V in MATLAB)
3: % Coordinate descent on the rows of V
4: for i = 1 : r do
5:

V (i, :)T ← argminx∈R
n
+
||M − U(:, I)V (I, :) − U(:, i)xT ||2F

= max

(
0,

(M − U(:, I)V (I, :))T U(:, i)

||U(:, i)||22

)
, I = {1, . . . , r}\{i}.

6: end for
7: end for

Remark 2 (original semi-NMF algorithm). In the original paper introducing
semi-NMF [9], the proposed algorithm is the following:

• The matrices U and V are initialized using k-means: the columns of U are
taken as the cluster centroids of the columns of M , while V is the binary
indicator matrix to which the constant 0.2 is added (for the multiplicative
updates to be able to modify all entries of V ; see below).

3Given that U and V remain full rank.
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• V is updated using the following multiplicative updates: for all k, j,

Vkj ← Vkj

√
max(0, (UTM)kj) + max(0,−(UTUV )kj)

max(0,−(UTM)kj) + max(0, (UTUV )kj)
.

These updates are guaranteed to decrease the objective function.
• U is updated as in Algorithm 1, using the optimal solution for V fixed.

Hence this algorithm is rather similar to Algorithm 1, where V would be initial-
ized with k-means and would be updated with the multiplicative updates. However,
compared to Algorithm 1, the algorithm from [9] suffers from the following drawbacks:

• It is not guaranteed to converge to a stationary point (nonincreasningness is
not a sufficient condition).
• It has a locking phenomenon: once an entry of matrix V is set to zero, it
cannot be modified (because of the multiplicative nature).
• It sometimes runs into numerical problems, because the denominator in the
update rules is equal to zero.
• Although it has almost exactly the same computational cost as Algorithm 1
(the update of V requires the matrix products UTM and UTUV in both
cases), it converges significantly slower. The same observation was made
by several works comparing coordinate descent approaches to multiplicative
updates for optimizing U and V in NMF [8, 19, 17, 20, 11].

Moreover, in this paper, our goal is not to compare strategies to update matrices U
and V but rather to compare initialization strategies. For these reasons, we do not
use the algorithm from [9] in this paper, but we will compare their initialization based
on k-means to our proposed approaches; see section 5.

2.3. SVD-based initialization. We can use the construction of Theorem 2.1
to initialize semi-NMF algorithms such as Algorithm 1; see Algorithm 2. Given a
rank-r approximation (A,B) of M ≈ AB computed via the truncated SVD, we flip
the sign of the rows of B (and the columns of A accordingly) so that the minimum on
each row of B is maximized. (Note that other sign permutations exist; see, e.g., [6].)
The motivation behind this choice is to reduce the effect of the correction done at
step 5 of Algorithm 2. We have the following result.

Corollary 2.3. Let M ∈ R
m×n, and let Mr−1 be its best rank-(r − 1) approxi-

mation with respect to the norm ||.||, then

(2.2) min
U∈Rm×r,V ∈R

r×n
+

||M − UV || ≤ ||M −Mr−1||.

The solution provided by Algorithm 1 initialized with Algorithm 2 satisfies this bound
for the Frobenius norm.

Proof. This follows directly from Theorem 2.1, and the fact that Algorithm 1
generates a sequence of iterates monotonically decreasing the objective function.

In section 5, we will compare Algorithm 2 with several other initialization strate-
gies. It turns out that, although it is an appealing solution from a theoretical point of
view (as it guarantees a solution with error equal to the error of the best rank-(r− 1)
approximation of M), it performs relatively poorly, in most cases worse than random
initializations.
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Algorithm 2. SVD-based initialization for semi-NMF (see Theorem 2.1).

Input: A matrix M ∈ R
m×n and a factorization rank r.

Output: A rank-r semi-NMF (U, V ) of M ≈ UV with V ≥ 0 achieving the same
error than the best rank-(r − 1) approximation of M .

1: [A,S,BT ] = svds(M, r − 1) ; % See the MATLAB function svds

2: A = AS;
3: For each 1 ≤ i ≤ r − 1: multiply B(i, :) and A(:, i) by −1 if minj B(i, j) ≤

minj(−B(i, j)) ;
4: U = [A −Ae];
5: V (:, j) =

(
B(:,j)

0

)
+max (0,maxi(−Bij)) e 1 ≤ j ≤ n.

3. Exact algorithm for semi-NMF. In the previous section, we showed that
for any matrix M , ranks(M) equals rank(M) or rank(M)+1. In this section, we first
completely characterize these two cases, and derive an algorithm to solve the exact
semi-NMF problem.

Theorem 3.1. Let M ∈ R
m×n. The following statements are equivalent:

(i) rank(M) = ranks(M).
(ii) There exists a nonzero vector z ∈ R

m such that M(:, j)T z > 0 for all j
such that M(:, j) �= 0. In other terms, all nonzero columns of M belong to
the interior of a half-space Pz = {x ∈ R

m | xT z ≥ 0} for some z �= 0 or,
equivalently, there exists a positive vector in the rows space of M after its
zero columns have been removed.

(iii) Given any factorization (A,B) ∈ R
m×r × R

r×n of M = AB with r =
rank(M), all nonzero columns of B belong to the interior of a half-space
Py for some y �= 0.

Remark 3. This result is very similar to [7, Thm. 3]. However, the case of matrices
with zero columns is not treated properly in [7, Thm. 3]. For example, according to [7,
Thm. 3], rank(0) �= ranks(0) which is incorrect. In fact, the authors claim that “As a
consequence, B contains a zero column which contradicts the fact that rank(B) = r.”
This is not true: if n > r (which is usually the case since r = rank(M) ≤ n), B can
contain zero columns while rank(B) = r.

Proof. We assume without loss of generality (w.l.o.g.) that M does not contain
a zero column (otherwise discard it, which does not influence the conditions above).

The equivalence (ii) ⇐⇒ (iii) follows from simple linear algebra. Since the
columns of the matrix M belong to the interior of Pz, we haveM

T z > 0. Without loss
of generality, we can take z = Aw for some w. In fact, let us denote A⊥ the orthogonal
complement of A so that, for any z, there exists w and w⊥ with z = Aw+A⊥w⊥ for
which we have

0 < MT z = BTAT
(
Aw +A⊥w⊥) = BTAT (Aw) = MT (Aw).

Hence, replacing z with Aw does not modify MT z > 0. Moreover, the derivation
above shows that the columns ofB belong to the half-space Py with y = ATAw = AT z
which proves (ii)⇒ (iii). Proving the direction (iii)⇒ (ii) is similar: the left inverse
A† ∈ R

r×m of A exists since rank(A) must be equal to r (A†A = Ir) and taking

z = A†T y, we have

0 < BT y = BT
(
A†A

)T
y = BTATA†T y = MT z.
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Let us show (iii) ⇒ (i). We have y ∈ R
r such that x = BT y > 0. Note that

the rows of B are different from zero since B ∈ R
r×n and rank(B) = r. Hence we

can flip the sign of the rows of B along with the corresponding entries of y (keeping
BT y unchanged) so that the maximum entry on each row of B is positive, that is,
maxj B(i, j) > 0 for all i (see, for example, step 2 of Algorithm 3).

Let

V (i, :) = B(i, :) + αix
T = B(i, :) + αiy

TB = (ei + αiy)
TB,

where αi = max(0,maxj
−B(i,j)

xj
) for all 1 ≤ i ≤ r so that V (i, :) ≥ 0, and ei is the ith

column of the identity matrix. In other terms,

V = B + αxT = B + αyTB =
(
I + αyT

)
B ≥ 0.

We can take U = A(I + αyT )−1 so that M = AB = UV with V ≥ 0. Using the
Sherman–Morrison formula, we have that

(
I + αyT

)−1
= I − αyT

1 + yTα
,

hence U can be computed given that yTα �= −1. It remains to show that yTα �= −1.
We have

yTα =
r∑

i=1

yiαi =
r∑

i=1

yimax

(
0,max

j

−B(i, j)

xj

)

>

r∑
i=1

yi

⎛
⎝ 1

n

n∑
j=1

−B(i, j)

xj

⎞
⎠

=
−1
n

n∑
j=1

( ∑r
i=1 B(i, j)yi∑r
k=1 B(k, j)yk

)
= −1.

The strict inequality follows from the fact that maxj B(i, j) > 0 for all i.
Let us show (i) ⇒ (ii). Let r = rank(M) = ranks(M), and M = UV with

U ∈ R
m×r and V ∈ R

r×n
+ , where rank(U) = rank(V ) = r. Since no column of M is

equal to zero, no column of V is, hence, V T e > 0. Since U is full rank, its left inverse
U † ∈ R

r×m exists (U †U = Ir). This implies that

MT
(
U †T e

)
= V TUTU †T e = V T (U †U)T e = V T e > 0.

In the remainder of the paper, we say that a matrix M is semi-nonnegative if and
only if rank(M) = ranks(M) if and only if the nonzero columns of M are contained
in the interior of a half-space.

Remark 4. Note that if rank(M) = n, then M ∈ R
m×n necessarily contains a

positive vector in its row space (since it spans Rn), hence, ranks(M) = rank(M) = n.
We also have ranks(M) ≤ n using the trivial decomposition M = MIn, where In is
the n-by-n identity matrix; see also [7, Lemma 1].

Theorem 3.2. Given a matrix M , solving exact semi-NMF can be done in poly-
nomial time (both in the Turing machine model and the real model of computation).

Proof. By Theorem 3.1, it suffices to check whether a positive vector belongs to
the row space of M (after having discarded the zero columns). For example, one can
check whether the following linear system of inequalities has a solution:

(3.1) M(:, j)T z ≥ 1 for all j such that M(:, j) �= 0.
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If the system is feasible (which can be checked in polynomial time, both in the Turing
machine model and the real model of computation [5]), ranks(M) = rank(M), other-
wise ranks(M) = rank(M) + 1. The rank of a matrix and a corresponding low-rank
factorization can be computed in polynomial time as well, e.g., using row-echelon
form [10]. The factorization can be transformated into an exact semi-NMF using the
construction of Theorem 2.1 in the case ranks(M) = rank(M)+1 and of Theorem 3.1
in the case ranks(M) = rank(M).

In practice, it is better to compute a factorization of M using the SVD, which is
implemented in our algorithms (Algorithms 2 and 3).

We have just shown how to compute an exact NMF. The same result can actually
be used to compute approximate semi-NMF, given that the columns of the best rank-r
approximation of M are contained in the same half-space.

Corollary 3.3. Let M ∈ R
m×n. If the rank-r truncated SVD of M is semi-

nonnegative, then semi-NMF (1.1) can be solved in polynomial time in m, n, and
O(log(1/ε)), where ε is the precision of the truncated SVD decomposition. Algorithm 3
is such a polynomial-time algorithm.

Proof. This follows from Theorem 3.1 and the fact that the rank-r truncated SVD
provides an optimal rank-r approximation and can be computed up to any precision
ε in time polynomial in m, n, and O(log(1/ε)); see, e.g., [23, 25] and the references
therein.

If no positive vector belongs to the row space of the second factor B of a rank-r
factorization AB, then, by Theorem 3.1, there does not exist a rank-r semi-NMF U
and V ≥ 0 such that AB = UV and the linear system (3.1) is not feasible. In that
case, we propose to use the following heuristic: solve
(3.2)

min
y∈Rr,ε∈R+

ε such that (B(:, j) + ε e)T y ≥ 1 for all j such that B(:, j) + ε e �= 0.

Although problem (3.2) is not convex, a solution can be obtained using a bisection
method on the variable ε. In fact, the optimal solution ε∗ will belong to the interval
[0, ε+], where ε+ = maxi,k max(−Bik, 0) since B + ε+ ≥ 0; hence, the problem is
feasible (e.g., y = e). Note that the bisection method first checks whether ε = 0 is
feasible in which case it terminates in one step and returns an optimal semi-NMF.
In our implementation, we used a relative precision of 10−3, that is, we stop the
algorithm as soon as εf − εi ≤ 10−3ε+, where εf is the smallest feasible ε found so far
(initialized at ε+), and εi is the largest infeasible ε found so far (initialized at 0) so that
our bisection procedure has to solve at most ten linear systems (since 0.001 > 2−10).
The reason we choose a relatively low precision is that high precision is not necessary
because, when the optimal ε∗ �= 0, the algorithm will be used as an initialization
procedure for Algorithm 1 that will refine the semi-NMF solution locally.

Algorithm 3 implements this strategy and will be used in section 5 to initialize
Algorithm 1 and will be shown to perform extremely well.

Remark 5. It is interesting to note that the value of ε∗ tells us how far B is
from being semi-nonnegative (hence AB; see Theorem 3.1). In fact, by construction,
the matrix Bε∗ = B + ε∗1r×n is semi-nonnegative. The idea behind Algorithm 3 is
to replace B with its semi-nonnegative approximation Bε∗ . If B is close to being
semi-nonnegative, ε∗ will be small and Algorithm 3 will perform well; see section 5 for
the numerical experiments. Note that other strategies for finding a semi-nonnegative
matrix close to B are possible and it would be interesting to compare them with
Algorithm 3; this is a direction for further research.
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Algorithm 3 . Heuristic for semi-NMF (see Theorem 3.1 and Corol-

lary 3.3).

Input: A matrix M ∈ R
m×n, a factorization rank r.

Output: A rank-r semi-NMF (U, V ) of M ≈ UV with V ≥ 0.

1: [A,S,BT ] = svds(M, r) ; % See the MATLAB function svds

2: For each 1 ≤ i ≤ r: multiply B(i, :) by −1 if minj B(i, j) ≤ minj(−B(i, j)) ;
3: Let (y∗, ε∗) be the optimal solution of the following optimization problem

min
y∈Rr,ε∈R+

ε such that (B(:, j)+ε e)T y ≥ 1 for all j such that B(:, j) + ε e �= 0.

% If ε∗ = 0 (⇐⇒ B is semi-nonnegative), then the heuristic is optimal.
4: x = (B + ε∗ 1r×n)

T y∗ ≥ 1 ; % 1r×n is the r-by-n matrix of all ones.

5: αi = max
(
0,maxj

−B(i,j)
x(j)

)
for all 1 ≤ i ≤ r ;

6: V = B + αxT ;
7: U ← argminX∈Rm×r ||M −XV ||2F (= M/V in MATLAB).

3.1. Nonnegative matrices. Theorem 3.1 implies the following.
Corollary 3.4. Let M ∈ R

m×n
+ , then ranks(M) = rank(M).

Proof. In fact, any nonnegative vector different from zero belongs to the interior
of the half-space Pe = {x ∈ R

m|∑m
i=1 xi ≥ 0}.

We have seen that if the best rank-r approximation of a matrix contains a positive
vector in its row space, then an optimal semi-NMF of the corresponding matrix can
be computed; see Corollary 3.3. This will be, in general, the case for nonnegative
matrices. In fact, the Perron–Frobenius theorem guarantees that this will be the case
when MTM is a irreducible nonnegative matrix (since its first eigenvector can be
chosen positive). Recall that a matrix A is irreducible if the graph induced by A is
strongly connected (every vertex is reachable from every other vertex).

Corollary 3.5. Let M ∈ R
m×n
+ . If MTM is irreducible, then semi-NMF (1.1)

can be solved via the truncated SVD for any rank r.
Corollaries 3.3 and 3.5 suggest that in almost all cases semi-NMF of nonnega-

tive matrices can be computed using a simple transformation of an unconstrained
approximation (such as the truncated SVD). This observation challenges the mean-
ing of semi-NMF of nonnegative matrices: does semi-NMF of nonnegative matrices
really make sense? In fact, most nonnegative matrices encountered in practice are
irreducible and, even if they are not, it is likely for Corollary 3.3 to hold since the
columns of the best rank-r approximation of a nonnegative matrix are likely to be
close to the nonnegative orthant, hence, belong to a half-space (in particular Pe).
(Note that, by the Perron–Frobenius theorem, for M ∈ R

m×n
+ and r = 1, there al-

ways exists a nonnegative best rank-1 approximation.) In these cases, semi-NMF can
be solved by a simple transformation of the SVD and it is not clear what semi-NMF
brings to the table.

Note that several authors have proposed semi-NMF algorithms and applied them
to nonnegative matrices, e.g., multiplicative updates where proposed in [9, 24]. Our
results show that, from a theoretical point of view, this does not really make sense
(since local optimization techniques such as the multiplicative updates usually con-
verge relatively slowly and are not guaranteed to converge to an optimal solution).
However, it is interesting to check whether the solutions obtained with these heuris-
tics (always) generate optimal solutions under the above conditions. We will see
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in section 5 that Algorithm 1 does not always converge to an optimal solution for
(semi-)nonnegative matrices for all initializations (in particular, when r is large).

A direction for further research that would make sense for semi-NMF of nonneg-
ative matrices is to add structure to the factors U and/or V . For example, imposing
V to be sparse would enhance the clustering property of semi-NMF. (Note that the
construction of Theorem 3.1 usually generates a matrix V with a single zero per row.)
In fact, if V is required to have a single nonzero entry per column equal to one,
semi-NMF reduces to k-means [9].

Remark 6. The results of this section also apply to nonpositive matrices since
M is nonpositive if and only if −M is nonnegative. Hence if we have a semi-NMF of
−M = UV , we have a semi-NMF for M = (−U)V .

3.2. Semi-nonnegative matrices. If one performs a semi-NMF of a semi-
nonnegative matrix M with factorization rank r = rank(M) = ranks(M), then, by
Theorem 3.1, the solution computed by Algorithm 3 will be optimal. However, if
r < rank(M), it is not guaranteed to be the case. In this section, we provide a suffi-
cient condition for Algorithm 3 to be optimal for semi-nonnegative matrices M when
r < ranks(M); see Theorem 3.6. Intuitively, the idea is the following: the columns of
the best rank-r approximationX of M should be relatively close to the columns ofM ,
hence, it is likely that they also belong to a half-space. In that case, by Corollary 3.3,
Algorithm 3 is optimal. Note that if the best rank-k approximation of M contains a
positive vector in its row space, then the best rank-r approximation of M for all r ≥ k
does as well since optimal low-rank approximations can be computed one rank-one
factor at a time; see, e.g., [14].

Theorem 3.6. Let M be a semi-nonnegative matrix so that there exist z with
M(:, j)T z > 0 for all j such that M(:, j) �= 0 and ||z||2 = 1. Let X be an approximation
of M such that

||M(:, j)−X(:, j)||2 < M(:, j)T z for all j such that M(:, j) �= 0,

and X(:, j) = 0 whenever M(:, j) = 0 (which is optimal and does not influence the
rank of X). Then X is semi-nonnegative, that is, there exists a rank-r semi-NMF
(U, V ) such that X = UV .

Proof. Let us denote the residual of the approximation E = M − X . For all j
such that M(:, j) �= 0 we have

X(:, j)T z = (M(:, j)− E(:, j))T z = M(:, j)T z−E(:, j)T z ≥M(:, j)T z−||E(:, j)||2 > 0,

while M(:, j) = 0 implies X(:, j) = 0, hence, the result follows from Theorem 3.1.
Note that, for X being the best rank-k approximation of M , we have for all j

that ‖M(:, j)−X(:, j)‖2 ≤ σk+1, where σk+1 is the (k + 1)th singular value of M .
Hence the smaller σk+1 is, the more likely it is for X to be semi-nonnegative. This
also means that the larger k is, the more likely it is for Algorithm 3 to perform well
(in particular, to return an optimal semi-NMF). This will be illustrated in section 5
with some numerical experiments.

4. Computational complexity and ill-posedness of semi-NMF. Despite
the positive results described in the previous sections, the semi-NMF problem in the
general case (that is, when the input matrix is not close to being semi-nonnegative)
seems more difficult. The rank-one semi-NMF problem is the following: given M ∈
R

m×n, solve

(4.1) min
u∈Rm,v∈Rn

||M − uvT ||2F such that v ≥ 0.
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Theorem 4.1. Rank-one semi-NMF (4.1) is NP-hard.
Proof. Assume w.l.o.g. that ||v||2 = 1. Then the optimal solution for u is given

by u∗ = Mv. Therefore, at optimality,

||M − uv||2F = ||M ||2F − 2uTMv + ||uvT ||2F
= ||M ||2F − 2vTMTMv + ||Mv||22||v||22
= ||M ||2F − 2||Mv||22 + ||Mv||22
= ||M ||2F − ||Mv||22 = ||M ||2F − vT (MTM)v,

hence, (4.1) is equivalent to

(4.2) max
v∈Rn

vT (MTM)v such that v ≥ 0 and ||v||2 = 1.

Since M is arbitrary, MTM can represent any semidefinite positive matrix, hence,
rank-one semi-NMF is equivalent to maximizing a convex quadratic over the unit ball
in the nonnegative orthant. As explained by N. D. Stein on Mathoverflow.net,4 the
problem (4.2) is equivalent to

(4.3) max
v∈Rn

vTBv such that v ≥ 0 and ||v||2 = 1,

where B is any symmetric matrix (not necessarily semidefinite positive). In fact, if B
is not semidefinite positive, one can consider the problem with B − λmin(B)In � 0,
where A � 0 indicates that the matrix A is positive semidefinite. In fact, it only
changes the objective function by a constant value since, for ||v||2 = 1,

vT (B − λmin(B)In) v = vTBv − λmin(B).

Let us use the following result: Checking copositivity of a symmetric matrix C, that
is, checking whether the optimal value of

min
v≥0,||v||2=1

vTCv

is nonnegative, is co-NP-complete [22] (a decision problem is co-NP-complete if it is
a member of co-NP–, its complement is in NP–, and any problem in co-NP can be
reduced to it in polynomial time; see [1] for more details). Since this problem can
be solved using (4.3) with B = −C, this implies that rank-one semi-NMF (4.1) is
NP-hard.

In comparison to NMF, this is a bit surprising: In fact, rank-one NMF can be
solved in polynomial time (this follows from the Perron–Frobenius and Eckart–Young
theorems) although it is NP-hard in general [26]. The reason behind this difference
is that semi-NMF allows both negative and positive elements in the input matrix
(clearly, rank-one semi-NMF of nonnegative matrices can also be solved in polynomial
time; see section 3.1). In fact, rank-one NMF is also NP-hard if the input matrix is
allowed to have both positive and negative signs [13, Cor. 1], that is, given a matrix
M ∈ R

m×n, the problem

min
u∈Rm,v∈Rn

||M − uvT ||2F such that u ≥ 0 and v ≥ 0.

is NP-hard.

4See http://mathoverflow.net/questions/48843/non-negative-quadratic-maximization.

http://mathoverflow.net/questions/48843/non-negative-quadratic-maximization
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Let us now show that semi-NMF is not always a well-posed problem (this question
was raised by M. Hanafi in a personal communication), that is, that an optimal
solution of (1.1) does not always exist. Here is a simple example:

M =

(
1 −1 0
0 0 1

)
.

The columns of M belong to the same two-dimensional half-space {x ∈ R
2 | x2 ≥ 0}.

However, the first two columns are on the boundary of that half-space. Therefore,
they are not contained in its interior, hence, ranks(M) = 3 (Theorem 3.1). However,
the infimum of (1.1) for r = 2 is equal to zero, taking

U =

(
1 −1
δ δ

)
and V =

(
1 −1 (2δ)−1

0 0 (2δ)−1

)
, with UV =

(
1 −1 0
δ δ 1

)

and making δ tend to zero.
Note that it is not likely for semi-NMF problems to be ill-posed; this only happens

when the best cone approximating the columns of M does not exist as it should be a
half-space.

5. Numerical experiments. In this section, we compare four strategies to ini-
tialize Algorithm 1 (which only requires the matrix V as an input):

1. Random initialization (RD): each entry of V is generated following the uni-
form distribution in the interval [0, 1], that is, V = rand(r,n) in MATLAB
notation (which we will reuse in the following).

2. K-means (KM): V is taken as the binary cluster indicator matrix generated
by k-means (Vkj = 1 if and only if the jth column of M belongs to the
kth cluster) to which is added the constant5 0.2. This is the initialization
from [9], although we do not use their algorithm to update U and V because
Algorithm 1 is numerically more stable and has much better convergence
properties; see Remark 2.

3. Algorithm 2 (A2): we use Algorithm 2 to initialize V . This initialization
guarantees the error to be same as the error of the best rank-(r− 1) approx-
imation.

4. Algorithm 3 (A3): we use Algorithm 3 to initialize V . This initialization
generates an optimal solution for matrices whose best rank-r approximation
contains a positive vector in its row space (which will be the case, for example,
when M is nonnegative and MTM irreducible).

In the following two subsections, we generate several synthetic data sets where the
dimensions of the input matrix M are m = 100 and n = 200, and the factorization
rank is r = 20 and r = 80. For each generated synthetic matrix, we run Algorithm 1
with the four different initializations and consider the error obtained after 10 and 100
iterations. We use the notation RD/10 (resp., RD/100) to refer to the algorithm that
performs 10 (resp., 100) iterations of Algorithm 1 using RD as an initialization. We
use the same notation for the three other initializations KM, A2 and A3, namely,
KM/10 and KM/100, A2/10 and A2/100, and A3/10 and A3/100. We also test the
different initialization strategies on real data in section 5.3.

5A priori, because we use Algorithm 1 and not the multiplicative updates of [9], we do not have
to add a constant to V . However, we observed that it allows Algorithm 1 to converge faster, and to
better stationary points. In fact, taking V as the binary cluster indicator matrix seems to induce
some kind of locking phenomenon as Algorithm 1 has difficulties getting away from this initial point.
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In order to compare meaningfully the error of solutions obtained for different
input matrices, we use the following measure: given a semi-NMF (U, V ) of M ,

(5.1) quality(U, V ) = 100

( ||M − UV ||F
||M −X ||F − 1

)
≥ 0,

whereX is the best rank-r unconstrained approximation ofM . It tell us how far away,
in percent, the semi-NMF UV is from the best unconstrained solution X . Note that
quality(U, V ) = 0 if and only if UV matches the error of the best rank-r approximation
of M if and only if the best rank-r approximation of M is semi-nonnegative.

The MATLAB code is available at https://sites.google.com/site/nicolasgillis/. All
tests are preformed using MATLAB on a laptop Intel CORE i5-3210M CPU @2.5
GHz 6GB RAM. We use the function linprog of MATLAB to solve the linear systems
within the bisection method implemented for problem (3.2) (we have also implemented
a version using CVX [16, 15] for users’ convenience—note that the solution of (3.2)
in y is nonunique and, hence, the solutions generated by different solvers are usually
different).

5.1. Nonnegative and semi-nonnegative matrices. In order to confirm our
theoretical findings from section 3, namely, that A3 computes optimal solutions for
nonnegative matrices (given that MTM is irreducible; see Corollary 3.5), and for
many semi-nonnegative matrices (under a certain condition; see Theorem 3.6), we
generate matrices as follows:

1. Nonnegative matrices. We generate each entry of M with the uniform distri-
bution in the interval [0,1], that is, we use M = rand(m,n). Note that, with
probability one, M > 0, hence, MMT is irreducible.

2. Semi-nonnegative matrices of rank higher than r. We generate matrices for
which k = rank(M) = ranks(M) = r + 10: we take M = UV where each
entry of U is generated with the normal distribution (mean 0, variance 1)
and each entry of V with the uniform distribution in the interval [0, 1], that
is, we use M = randn(m,k)*rand(k,n).

For each value of r (20, 80), we generate 500 such matrices and Figure 1 displays
the box plots of the measure defined in (5.1) (we perform a single initialization for
each generated matrix). These results confirm that A3 performs perfectly for these
types of matrices. Note that (i) A2 performs relatively poorly and leads to solutions
worse than RD/100 and KM/100, and (ii) RD/100 (resp., KM/100) do not always
generate solutions close to optimality, in particular, for semi-nonnegative matrices
when r = 80 for which the average quality is 5.5% (resp., 1.9%).

5.2. Semi-nonnegative matrices plus noise. In this subsection, we generate
semi-nonnegative matrices with rank(M) = ranks(M) = r to which we add Gaussian
noise. First we compute M = UV , where each entry of U is generated with the normal
distribution (mean 0, variance 1) and each entry of V with the uniform distribution
in the interval [0, 1], that is, we use M = randn(m,r)*rand(r,n), similarly as in
the previous subsection. Then we compute the average of the absolute values of
the entries of M : xM = 1

mn

∑
i,j |M(i, j)| and add Gaussian noise proportional to

xM : we generate N = δ xM randn(m,n), where δ is the noise level and then update
M ←M+N . For δ = +∞, each entry ofM is generated using the normal distribution,
that is, M = randn(m,n). Figure 2 displays the box plots of the measure defined in
(5.1) for different values of δ. As in the previous subsection, for each experiment, we
generate 500 matrices and report the quality obtained for a single initialization for
each algorithm. We observe that:

https://sites.google.com/site/nicolasgillis/
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Fig. 1. Box plots of the error defined in (5.1) for nonnegative and semi-nonnegative matrices.

• A2 performs quite poorly: it is always dominated by RD/100 and KM/100.
Hence, although A2 is appealing from a theoretical point of view, it does not
seem to have much practical use.
• KM performs on average slightly better than RD, hence KM initialization
seems beneficial in some cases (this will not be the case for some real data
sets tested in section 5.3).
• Even for a relatively large noise level (in particular, δ = 5), A3 performs
perfectly (all semi-NMF have quality (5.1) smaller than 10−2) because the
best rank-r approximation of M is close to being semi-nonnegative. The
reason why A3 works perfectly even for very large noise levels can be explained
with the way the matrix V was generated: using the uniform distribution for
each entry. This makes the columns of matrix UV be far from the boundary of
a well-chosen half-space, that is, there exists z such that (UV )T z/||z||2 � 0.
In particular, taking z = (U †)T e, the expected value of (UV )T z = V T e is
equal to r

2e.• When the noise level increases and the rank is not sufficiently large (the first
example is for δ = 10 and r = 20), the condition of Theorem 3.6 is not
(always) met and some solutions generated by A3 do not match the error of
the best rank-r approximation.
• When only noise is present and the matrix is Gaussian (δ = +∞), the condi-
tion of Theorem 3.6 is never met and A3 fails most of the time to extract a
semi-NMF whose error is close to the error of the best rank-r approximation.
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Fig. 2. Box plots of the error from (5.1): semi-nonnegative matrices with noise (δ = 5, 10,+∞).

This is not surprising as these matrices are not likely to have semi-nonnegative
best rank-r approximations.
However, when r is large (r = 80), A3 outperforms RD, KM, and A2; see
Figure 2 (bottom right) and Figure 3 (right). We believe the reason is that,
although the best rank-r approximations are not semi-nonnegative, they have
a vector in their row space close enough to the nonnegative orthant, hence,
A3 provides a good initial approximation.
On the contrary, when r is small (r = 20), A3 performs worse than RD/100
and KM/100 although the gap between both approaches is not significant as



EXACT AND HEURISTIC ALGORITHMS FOR SEMI-NMF 1419

10 20 30 40 50 60 70 80 90 100
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

A
ve

ra
ge

 v
al

ue
 o

f t
he

 q
ua

lit
y 

de
fin

ed
 in

 E
q.

 (
9)

Iteration

RD
KM
A2
A3

0 20 40 60 80 100
0

1

2

3

4

5

6

Iteration

Fig. 3. Average value of the quality (5.1) for each iteration of Algorithm 1 on the 500 Gaussian
matrices (δ = +∞) for r = 20 (left) and r = 80 (right) with the different initialization strategies.

shown in Figure 2 (bottom left); see also Figure 3. (Note that, with r = 10, A3
performs even worse compared to RD/100 and KM/100; see also section 5.3
for an example of this situation on real data.)
Note that we have observed this behavior for other values of m,n, and r. As
explained above, the reason is that it becomes more likely as r increases for
the row space of the best rank-r approximation of M to contain a vector close
to the nonnegative orthant, hence, for A3 to perform well. (At least, the row
space cannot get further away from the nonnegative orthant as it is expanded
as r increases.) This will be confirmed on real data in section 5.3.
• It seems that A3 generates matrices close to stationary points of (1.1) as
the difference between the box plots of A3/10 and A3/100 is small on all
these examples. This is another advantage of A3: in all the experiments we
have performed, it always allowed Algorithm 1 to converge extremely quickly
(essentially within 10 iterations); see Figure 3 displaying the average value
of the quality (5.1) for each iteration on the 500 Gaussian matrices. This
observation will be confirmed on real data in section 5.3.

Finally, the two main recommendations that we can give based on these experi-
ments are the following:

1. A3 works, in general, very well, being optimal for matrices whose best rank-r
approximation is semi-nonnegative. Hence we would always recommend to
try it on your favorite matrices.

2. RD and KM sometimes work better than A3 (after sufficiently many iterations
of a semi-NMF algorithm), in particular, when the factorization rank r is
small and the best rank-r approximation of the input matrix is far from
being semi-nonnegative (in fact, if the best rank-r approximation would be
semi-nonnegative, A3 would perform perfectly). They should be tried on
matrices for which A3 was not able to compute a semi-NMF whose error is
close to the error of the best rank-r approximation.

Remark 7. In these experiments, we intentionally took n ≥ m because an m-
by-n matrix is less likely to be semi-nonnegative when n ≥ m. In particular, an
m-by-n Gaussian matrix with n ≤ m is semi-nonnegative with probability one since
rank(M) = ranks(M) = n with probability one (although this does not imply that
its best rank-r approximation is; see Theorem 3.6). For example, running exactly the
same experiment with m = 200, n = 100, r = 20, and δ = 10, 86% of the solutions
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Table 1

Numerical results on real-world data sets: quality (5.1) of the different initialization approaches
for semi-NMF.

CBCL Ion 3 Ion 5 Ion 10 Wave 3 Wave 5 Wave 10
RD/10 (average) 17.59 0.59 1.90 3.12 0.19 2.43 3.44
RD/10 (best) 16.73 0.47 1.49 2.63 0.15 1.96 2.90

KM/10 (average) 27.44 0.54 2.11 4.22 0.23 5.40 14.87
KM/10 (best) 26.13 0.41 1.99 2.68 0.23 5.24 13.88

A2/10 1.18 0.63 3.04 3.65 0.56 2.09 3.50
A3/10 0 0.67 0.38 0 0 0 0

RD/100 (average) 1.59 0.16 0.44 0.37 0.01 0.03 0.07
RD/100 (best) 1.34 0.15 0.29 0.33 0.01 0.01 0.03

KM/100 (average) 6.00 0.16 0.98 0.44 0.01 0.09 0.13
KM/100 (best) 5.61 0.15 0.31 0.39 0.01 0.05 0.06

A2/100 1.18 0.16 0.99 1.57 0.02 0.14 0.25
A3/100 0 0.67 0.38 0 0 0 0

generated by A3 match the best rank-r approximation up to 0.01% (while only 0.4%
do for m = 100, n = 200, r = 20; see Figure 2).

5.3. Real data. In this section, we compare the different approaches on three
data sets:

• CBCL face data set: it is arguably the most popular data set for NMF as
it was used in the foundational paper of Lee and Seung [18] with r = 49;
see http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html. It consists
in 2429 facial images, 19-by-19 pixels each. The corresponding matrix M
therefore has size 361 by 2429 and is nonnegative. This will illustrate the
optimality of A3 on nonnegative data.
• Ionosphere and Waveform UCI data sets: these are the two data sets that
contain both positive and negative entries used in [9]. Ionosphere corresponds
to a 34-by-351 matrix with values in the interval [−1, 1], Waveform to a 22-
by-5000 matrix with values in the interval [−4.2, 9.06] and we use r = 3, 5, 10
for both data sets; see https://archive.ics.uci.edu/ml/datasets.html for all the
details.

Our goal is to illustrate, on real data, the observations made on synthetic data
sets. Again we compare the four semi-NMF initializations (RD, KM, A2, and A3)
combined with Algorithm 1 in terms of the quality measure defined in (5.1). For RD
and KM, we use ten initializations (KM generates, in most cases, different solutions
for different runs) and report both the average quality and the best quality obtained
by the different runs. Table 1 reports the error after 10 and 100 iterations of the four
approaches (as before).

Figure 4 shows the evolution of the quality for the CBCL data set, Figure 5 for
the Ionosphere data set, and Figure 6 for the Waveform data set.

Interestingly, these results confirm the observations on synthetic data sets:
• For the CBCL data set (a nonnegative matrix), A3 identifies an optimal
solution while the other approaches are not able to (although performing
more iterations of Algorithm 1 would improve their solutions; see Figure 4).
• For the Ionosphere data set, when r is small (r = 3), A3 is not able to identify
a good initial point and performs the worse (as for Gaussian matrices with
r = 20; see Figure 3). When r is large (r = 10), A3 is again the only
approach that leads to an optimal solution matching the error of the best

http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html
https://archive.ics.uci.edu/ml/datasets.html
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Fig. 4. Quality (5.1) for each iteration of Algorithm 1 with the different initialization strategies
on the CBCL data set (r = 49).
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Fig. 5. Quality (5.1) for each iteration of Algorithm 1 with the different initialization strategies
for the Ionosphere data set: r = 3 (top), r = 5 (bottom left), and r = 10 (bottom right).

rank-r approximation. For r = 5, it does not perform best, but allows us to
obtain a rather good initial point (A3/10 performs best).
• For the Wave data set, A3 is always able to identify an optimal solution,
because its best rank-r approximation is semi-nonnegative (recall that if it is
semi-nonnegative for some r, it is for all r′ ≥ r; see section 3.2).
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Fig. 6. Quality (5.1) for each iteration of Algorithm 1 with the different initialization strategies
for the Waveform data set: r = 3 (top), r = 5 (bottom left), and r = 10 (bottom right).

• A3 allows Algorithm 1 to converge very quickly, in all cases in less than 10
iterations.

It is interesting to note that, for these experiments, RD performs better than KM
although the difference is not significant (except for the CBCL face data set).

6. Conclusion. In this paper, we have addressed theoretical questions related
to semi-NMF that led us to the design of exact and heuristic algorithms. Our contri-
bution is threefold. We showed the following:

• The approximation error of semi-NMF of rank r has to be smaller than the
approximation error of its unconstrained counterpart of rank r − 1. This re-
sult allowed us to design a new initialization procedure for semi-NMF that
guarantees the error to be equal to the error of the best rank-(r − 1) ap-
proximation; see Theorem 2.1 and Algorithm 2. However, it seems that this
initialization procedure does not work very well in practice.
• Exact semi-NMF can be solved in polynomial time (Theorem 3.2), and semi-
NMF of a matrix M can be solved in polynomial time up to any given pre-
cision with Algorithm 3 given that the best rank-r approximation of M is
semi-nonnegative. Algorithm 3 can also handle cases when the aforemen-
tioned condition is not met, and we illustrated its effectiveness on several
synthetic data sets.
• Semi-NMF is already NP-hard, in general, in the rank-one case (Theorem 4.1).
Moreover, we showed that some semi-NMF instances are ill-posed (that is,
an optimal solution does not exist).
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Further research on semi-NMF includes the design of other initialization strategies
(in particular, in the case r is small and the best rank-r approximation of M is far
from being semi-nonnegative; see also Remark 5), and the analysis of constrained
variants of semi-NMF such as sparse semi-NMF, where V is required to be sparse. In
fact, sparse semi-NMF would, in general, make more sense as it has better clustering
properties; see the discussions in section 3.1 and in [9] for more details. In particular,
it would be interesting to see how Algorithm 3 performs as an initialization strategy
in that case.
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