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In the following, we provide proofs for Theorem 4.2, Theorém and Theorem 4.5. Note that the derivations and
proofs make use of the kernel sub-matrices3, C, D, E, F' (as defined in Eq. 4.6 of the original paper).

1 Proof of Theorem 4.2

Leth¥ andh; be the optimal source and target hypothesé@gjrmandH, respectively. Using triangle inequality for the
loss function, we have

€t(he, fr) < €(hy, hy) + €(hE, fr)-

We use the notion af,a-distance in the next step, which is definedsas),, ;,,cs¢ 2les(h1, h2) — €:(h1, he)| [1].
This gives us

1
et(he, ft) < es(he, hy) + §dH1,AH1,(DS7Dt) + et(hy, ft)-
We make use of triangle inequality again to get

1
Et(hh ft) < Es(htv fs) + es(fsa ft) + Es(h:, ft) + §dHtAHt (Dsn Dt) + Et(h:, ft)
We denote)s := €,(fs, ft), vs := es(h}, ft), andvy := e, (h}, fi). Subtracting (hs, fs) from both sides, we get
1
Gt(hta ft) - 6s(hs; f&) S (Gs(htvfs) - es(hsa f&)) + §dHf,AH1,(Ds,Dt) + Ns + Vg + Vi

1
S ME&[ht(x) - hs(m)] + §dH1,AH1,(DSaDt) + Ns + Vg + Vi
(using M-Lipschitz property of loss function)
1
= MES[<ht7 k/’(l'7 )> — <h37 k/’(l'7 )>] + §dHtAHt (DS7 Dt) + Ns + Vs + 1y
(using the reproducing kernel property)

1
= ]\/[EsKht - h57 k(x, )>] + idHtAHt (Ds; Dt) +ns + Vs + 11t
1
< Mi[he = hs| | Es[[[k(2, )] + S, ar, (Ds, De) +ns +vs + 14

1
= M||hy — hs||Es[\/ k(z, )] + EdHtAHt (Ds, D) +ns + vs + 14

(Note: Some of the steps involving reduction to the t@g{\ /k(z, :c)} are similar to [2].)



2 Proof of Theorem 4.4: Complexity for EA

In this section, we bound the complexity of target hypotbekiss7; , for EA. The base hypothesis cla&sin Eq. 4.3
(of the original paper) is symmetric in source and targetdtiypses. So the complexity of source clggs, can be
obtained by replacing adequate terms. We are interestéut iodmplexity of the target hypothesis clags, which
is defined as7}, , := {h2 : X — R, (h1, ha) € H}, whereh, is not fixed a priori.

The Rademacher complexity o, , is defined as

Rn(jéA) =F, sup

(h1,h2)EH

N
2
E;Uz‘hz(ﬂﬁi)

The basic framework of proof is similar to the proof of the m#ieorem of [3]. The hypothesis class considered in
their work is different than ours. They find the complexitygokrage hypothesis class (i€~ (hi(z) + ha(x))/2),
while we are interested in clasg/, ,, as defined above. We also note that € J., =— —hy € Jk, since
(h1,h2) € H = (—h1,—hs2) € H. This means that we can remove the absolute value sign frar@.EEq Since,
Vi, ho(z;) = (k(x;,-), he), we can restrict the supremum#g andh, that are in the span of all samples and also in
‘H. The restricted condition ofh4, h2) then becomes

{(ha,hg) : Mo’ Ka + X' KB+ Ma = B) K(a = B) < 1} = {(ha, hp) : (o/ B)M (o B') <1}

where

] (2.1)

M= M+ ANK —AK
o —AK A+ MK )
and K is the kernel matrix for source labeled and target labeletpées. Using the reproducing kernel property, we
get

A 2
R.(Tpa) = o . {o/(C'B)B: (o B)M(a/ ) < 1}.
a,BERIs Tt

For a symmetric positive definite matrix M, it can be showrt tha

sup 2B = [|(M/M10) " 2a|| = |(M )35, (2.2)
(a,8):(a’ B)M(a’ B)'<1

and the maxima occurs at = 7M1_11M126. M /M;; is the Schur complement of blodk/;; of matrix M (i.e.
M /My = Moy — Moy M1 My5).

The matrixA/ may not always be full rank, however it can be noted thatig in the null space o<, (C’ B)j will be
zero. So, we can projeg¢tonto the column space @ (or row space due t& being a symmetric matrix) to gét,,.

and the term{C’" B)_3,. is equal to(C’ B)S. Specifically,3,, can be thought as computed by the operaﬁdﬁgﬂ
whereU is the full eigenvector matrix and,, is the eigenvector matrix consisting of only the vectorsihgwonzero
eigenvalues. So, theip is restricted to the projected,, andj,,, and the expression for Rademacher complexity can
be rewritten as

. 2
R.(Jha) = ~E, su o' (C" B)Byr: (.3, )M (. B,.) < 1¢.
( EA) lt apr,BPTGCOES'pace{K}{ ( )ﬁp ( P ﬁp ) ( P ﬁp ) }

We proceed in a manner similar to that used in [3] and diagom#he kernel matri¥s to get orthonormal basd$
corresponding the nonzero eigenvaluks= U’AU). A is a diagonal matrix of size x r, containing just the nonzero
eigenvalues andis the rank of matrix<’. Sincea,, andg,, are in the span of column spacel6f there exist; and
b such that

opr =Ua and 0, =Ub

The expression for complexity now becomés, (7% ,) = %Ea sup {c'Wb : (¢’ V)P(a' V') <1} whereWW =
(C" B)U and

P= ( A ()\;i\/;\)/\ )



Using Eq. 2.2, the supremum can be evaluated as
~ 2 B
Ry (Tpa) = EEUH(P 12) 0, Wa]|.

We now make use of Kahane-Khintchine inequality [4] whickteted in the following lemma.

Lemma 2.1. For any vectorsas, as, . . ., a,, and independent Rademacher randomvariables oy, o9, . . . , o, We have
1 2 2 2
—F ||loj 0iai]|” < (Flojzq0:a; < E|oi 0ia;
7 loiioiail” < (Eloiiioiad]) loizioiai
Using the above inequality we get a lower and upper bound®odamplexity as
2Cha _ p (7t 2Cka
21/4lt S Rn(jEA) S T? (23)
where
2 —1\1/2
(Cha)” = Eol|(P~1)3*W'o]?
— Eo— / P—l !
(O’ W( )QQW O’) (24)

= B tr{oc' W (P~ ), W'}
=tr{W (P 1)puW'}.

The above expression can be written in terms of original&esnb-matrices by doing algebraic manipulations on the
eigenbases using similar steps as in [3]. We finally get thelre

1 1
ct) = —(——— ) tr(B).
(E'A) )\2(1+ﬁ)r( )
PRy

Plugging it into Eqg. 2.3 gives the desired bounds on the Radaer complexity of the EA target hypothesis class.

3 Proof of Theorem 4.5: Complexity for EA++

In this section, we bound the complexity of the target hypei#i class7;, for EA++. The base hypothesis class
H,+ in Eq. 4.3 (of the original paper) in source and target hypséis. So the complexity of source clags, can
be obtained by replacing adequate terms. We are interestée icomplexity of the hypothesis clagg , which is
defined asﬁ+ :={hy: X — R, (hy,ha) € Hyy}, whereh; is not fixed a priori.

The Rademacher complexity of! , is defined as

sup
(h1,ho)EH {4+

It
2
L ZUihz(iﬂi)

i=1

Rn(jfrJr) =E,

] (3.1)

We proceed similar to the complexity proof of EA given in goas section. Note thdt, € J{, = —hy € J}
since(hy, ha) € Hyy = (—h1, —ha) € Hy. This means that we can remove the absolute value sign frofd.[Eq
Since,Yi, ha(z;) = (k(z;,-), h2), we can restrict the supremumig andh that are in the span of all samples and
also inH, 4. The restricted condition ofh;, h2) then becomes

{(ha;hg) : M’ Ko+ X' KB+ Ma = B) K(a = 3) + Au(a = 8) M (o — B) < 1}
= {(ha;hp) : (¢/ B)N(a’ §') < 1}

o

where

R R)

)(D’ E F'),



N = ( (Al—j;fA()K (AQ_j[A()K ) +AU( T )

and K is the kernel matrix for source labeled, target labeled anget unlabeled samples. Using the reproducing
kernel property, we get
b t _ 2 10 N N
Rn(Jiy) = 7 Es sup {o'(C" BE)3: (o' B')N(a' ) <1}.
It (ap)eristitin

Using Eq. 2.2, the supremum in the above equation bec¢ifés )22 (C” B E)'a]|.

If the matrix V is not full rank, we can projegt anda onto the column space df without changing the supremum
(as it is done in the previous proof). So, thep is restricted to the projected,, andg,,, and the expression for
Rademacher complexity can be rewritten as

A 2
Ri(Ti) =7 s {o/(C' B E)By : (0B, )N (o 8),) <1},
lt apr,BprEColSpace{ K}

We proceed in a manner similar to the previous proof and dialige the kernel matriX to get orthonormal basés
corresponding the nonzero eigenvaluks=t U’AU). A is a diagonal matrix of size x r, containing just the nonzero
eigenvalues andis the rank of matrix<’. Sincea,, andg,, are in the span of column spacel6f there exist; and

b such thaiv,, = Ua, By = Ub.

The expression for complexity now becomes,
2

] Eysup{c'Wb : (a' b")P(a' V') <1}
¢

Rn(jfr+> =
whereW = (C' B E)U and
p_ (A + M)A —AA Y Vo M -M vV o
- —AA (A2 +N)A S N I 7 -M M 0V

The solution to the above maximization problem is giverﬂb?*l)éfw’aﬂ. Using Kahane-Khintchine inequality
and taking similar steps as in Eq. 2.4, we get the followirsylte

20t

2t
I

(3.2)

Where(C}th)2 =tr{W (P~ 1) W'}

Let T be the first term in the above expression farThe second term can be written A&’ where

=

I

/‘\

SN

S o

~
BSlvlulsiolv)

Using the matrix inversion lemma, we halB+ A\, RR') ™ = T -\ T'R(I+ X\, R'T'R)"'R'T~!. The term
tr{W (T~1)22W'} evaluates to the same expression as the complexity of EAewiqus proof. The second term can
also be reduced in terms of original kernel sub-matricesdyjopming algebraic manipulations on eigenbases using
similar steps as used in [3]. We finally get the result

t \2 _ 1 . A1 ? —1 7
(CLy) < — _1>tr(B) Au ()\)\1+>\>\2+>\1>\2> tr (E(I+kF)"'E'),
>\2+(A_1+X)

AduQutda) Plugging it into Eq. 3.2 gives the desired bounds on the Radéer complexity of EA++

wherek = EETEB Vv vpw
target hypothesis class.
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